

Modélisation de séries temporelles et mesure de l'incertitude liée à l'impact du risque climatique sur la mortalité

Ael TREIGNER

1 • Introduction

 Les nouveaux risques challengent les actuaires dans leurs modélisations aux horizons lointains.

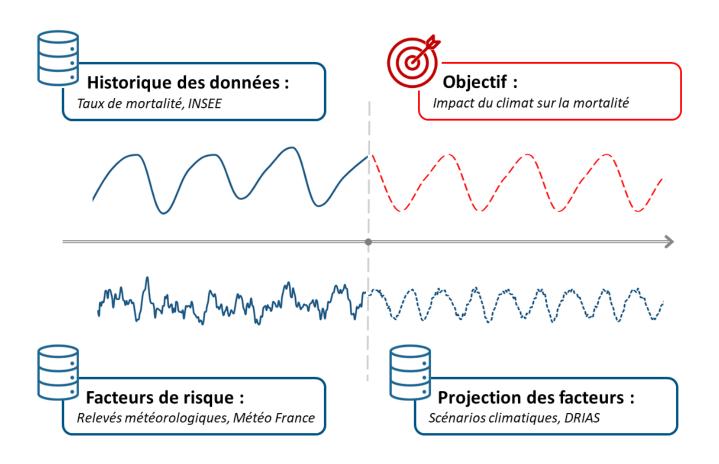
 Les superviseurs émettent de nouvelles demandes, qui pourraient devenir régulières et obligatoires.

- L'objectif des stress tests climatiques est de quantifier les impacts liés au changement climatique.
- ****

Proposer une réponse méthodologique à l'évaluation du risque climatique sur la mortalité à long terme

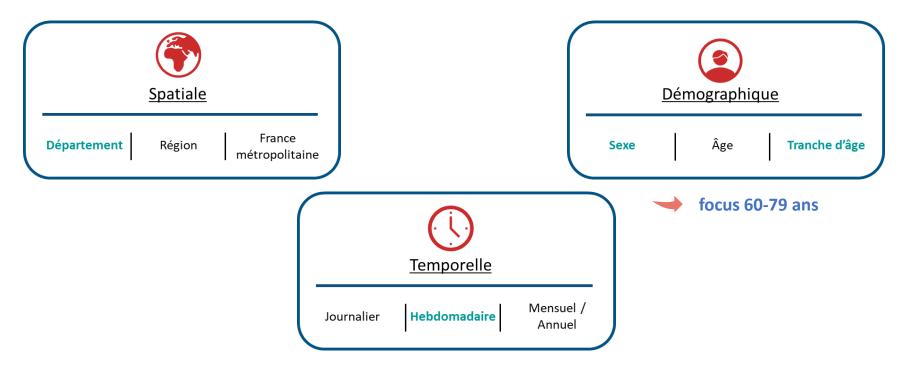
Sommaire

- Données
- Etudes préalables
- Modélisation
- Projections
- Mesures de l'incertitude
- Conclusion


Sommaire

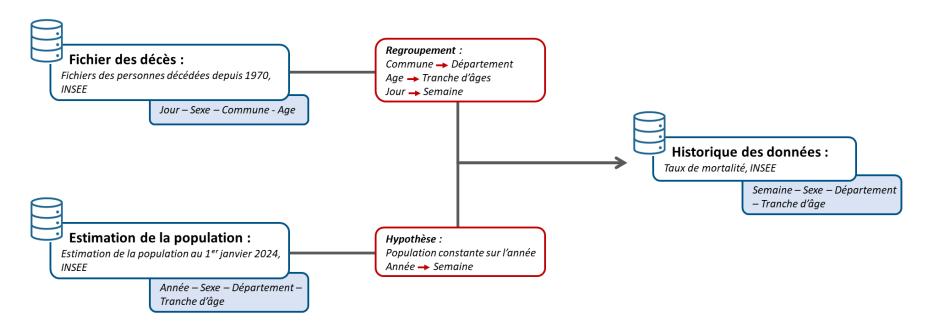
- Données
- Etudes préalables
- Modélisation
- Projections
- Mesures de l'incertitude
- Conclusion

2 • Données


Etude réalisée uniquement à partir d'open-data

2 • Données - Maille

 Les différentes sources de données doivent prendre en compte plusieurs contraintes définissant la maille.


Compromis entre biais des données climatiques et variance des taux de mortalité

2 • Données - INSEE

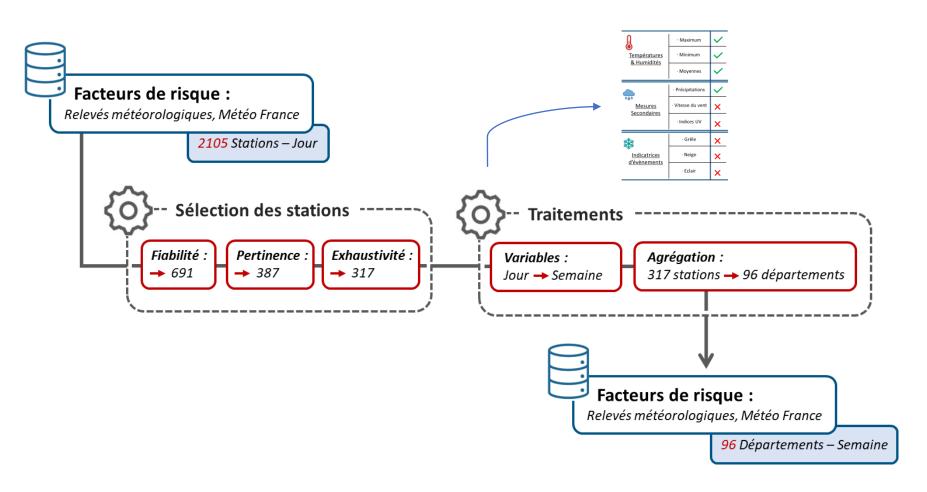
Calcul des taux de mortalité avec 2 bases de données open-source :

Création d'une base de taux de mortalité historiques à la maille semaine – sexe – département – tranches d'âges

2 • Données - Météo France : présentation

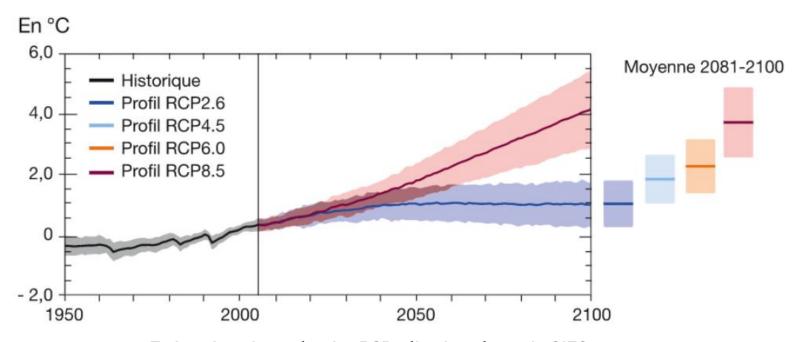
- Des nouveaux relevés de stations météorologiques sont disponibles en open-source depuis le 1er janvier 2024.
- Au total, 2105 stations mesurent près de 70 variables climatiques.

Températures & Humidités	· Maximum · Minimum · Moyennes	
Mesures Secondaires	· Précipitations · Vitesse du vent · Indices UV	
Indicatrices d'évènements	· Grêle · Neige · Eclair	



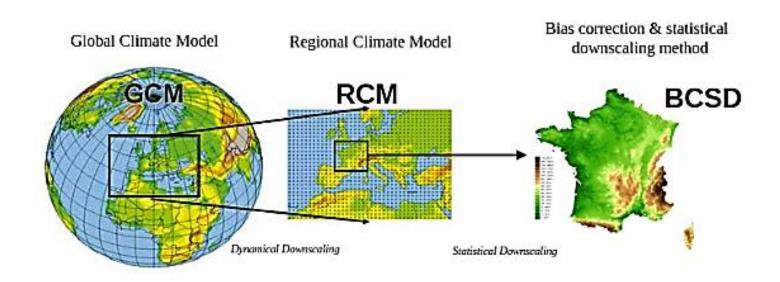
Utilisation de nouvelles données météorologiques open-source

2 • Données - Météo France : traitements


Création d'une base de facteurs de risque historiques à la maille semaine – département

2 • Données - DRIAS: scénarios RCP

- Des projections de variables météorologiques sont mises à disposition sur la plateforme DRIAS.
- Elles sont créées avec des scénarios RCP et des modèles climatiques.

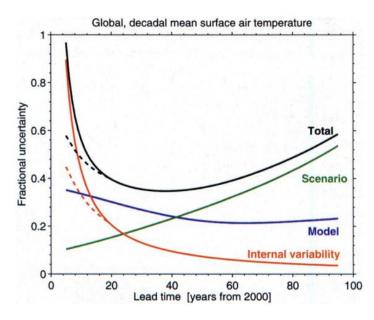


Trajectoires des scénarios RCP sélectionnés par le GIEC

2 • Données - DRIAS: modèles climatiques

Les modèles climatiques se basent sur les scénarios RCP pour simuler des évolutions plausibles de paramètres atmosphériques.

Étapes de construction d'un modèle climatique


GIEC, 5^{ème} rapport, 2014

2 • Données - DRIAS: incertitude

- Une incertitude importante est associée à ces simulations, due aux différentes étapes de construction :
 - L'incertitude des scénarios RCP (Scenario)
 - Les erreurs des modèles climatiques (Model)
 - La variabilité naturelle des paramètres climatiques (Internal variability)
- Cette incertitude peut être estimée en utilisant plusieurs simulations.

Estimation de l'incertitude des simulations

E. Hawkins & R. Sutton, "The potential to narrow uncertainty in regional climate predictions", 2009

Sélection de deux simulations : 1 créée avec RCP2.6, 1 créée avec RCP8.5

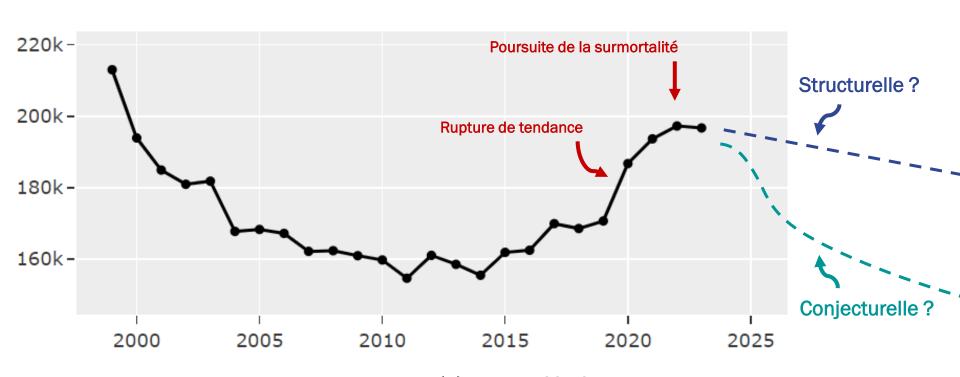
2 • Données - DRIAS: incertitude

Des extractions sont réalisées pour chaque simulation, à partir de 96 points de coordonnées, soit 1 par département.

 Les variables créées lors du traitement des données Météo-France sont recréées à l'identique.

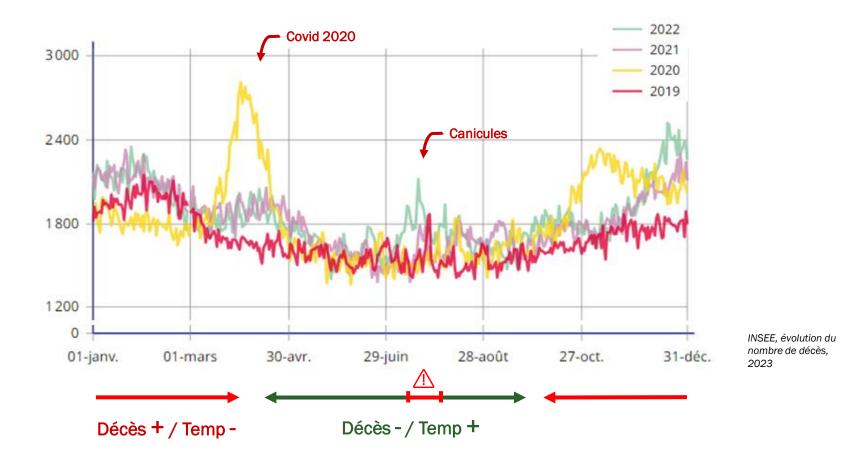
		<u>Traitement</u> Météo-Fr	<u>Accès</u> DRIAS
A	· Maximum	>	>
Températures	· Minimum	\	/
<u>& Humidités</u>	· Moyennes	~	~
	· Précipitations	>	>
Mesures Secondaires	· Vitesse du vent	×	~
	· Indices UV	×	~
**	· Grêle	×	×
Indicatrices d'évènements	· Neige	×	>
<u>u everiements</u>	· Eclair	×	X

Création de bases de projections des facteurs de risque à la maille semaine – département


Sommaire

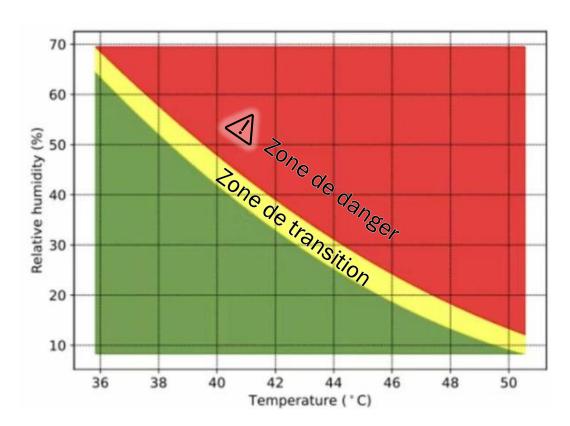
- Données
- Etudes préalables
- Modélisation
- Projections
- Mesures de l'incertitude
- Conclusion

3 • Etudes Préalables - Rupture de tendance



Rupture plutôt conjecturelle attendue lors des projections

3 • Etudes Préalables - Saisonnalité



Les températures et la mortalité ont une corrélation négative forte

3 • Etudes Préalables - Température Humide

W. Larry Kenney, CC BY-ND

Limite critique du couple température-humidité

L'introduction de la température humide aidera les modèles à identifier les canicules

Sommaire

- Données
- Etudes préalables
- Modélisation
- Projections
- Mesures de l'incertitude
- Conclusion

4 • Modélisation - Modèles

- Décomposition additive « Classique » :
 - *T_t* tendance, *S_t* saisonnalité
 - *X_t* processus stationnaire

$$Y_t = T_t + S_t + X_t$$

- Modèle Prophet :
 - *H_t* jours fériés
 - *X_t* variables explicatives : régresseurs

$$Y_t = (1) + H_t + \sum_{i=1}^k \beta_i X_{i,t} + \epsilon_t$$

- Modèle Neural Prophet :
 - $\mathit{AR}_t(p)$ auto-régressif d'ordre p

$$Y_t = (1) + (2) + AR_t(p) + \epsilon_t$$

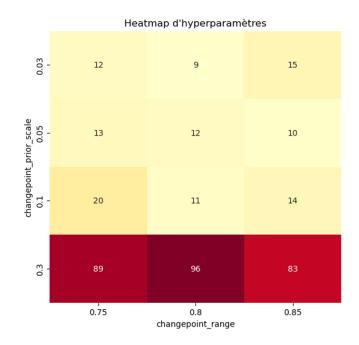
Prise en compte des variables explicatives avec le modèle Prophet

4 • Modélisation - Contraintes

Une modélisation locale, avec une série temporelle par couple sexe – tranche d'âge – département, soit 768 modèles.

- Paramétrer les modèles :
 - Hyperparamétrage
 - Sélection des régresseurs
 - Sélection des modèles en fonction de la rupture de tendance

Paramétrage des modèles à réaliser sous contraintes de temps de calcul



4 • Modélisation - Hyperparamètres

Hyperparamètres:

- Tendance : linéaire / logistique
- Saisonnalité : additive / multiplicative
- Points de rupture (changepoint) :
 - Amplitude (prior_scale)
 - Placement (range)

Heatmap de couples d'hyperparamètres optimaux, pour 384 modèles

Première sélection d'hyperparamètres

4 • Modélisation - Régresseurs : évaluation

 La pertinence des régresseurs est évaluée individuellement, en calculant l'amélioration de la RMSE par rapport à un modèle sans régresseurs.

RMSE =
$$\sqrt{\text{MSE}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2}$$

Méthode pour mesurer l'apport des régresseurs aux modèles

4 • Modélisation - Régresseurs : sélection

- Deux ensembles de régresseurs sont sélectionnés.
 - v1:5 régresseurs pertinents et non-redondants
 - v2 : v1 + température humide

Variable	Add (+)	Mltp (x)	Ensemble 'v1'	Ensemble 'v2'	Signification	
t_max_7j	×		×	×	Température maximum sur les 7 derniers jours	
t_mean_30j	×		×	×	Température moyenne sur les 30 derniers jours	
u_max_7j	×		×	×	Maximum de l'humidité quotidienne moyenne sur les 7 derniers jours	
u_max_30j		×	×	×	Maximum de l'humidité quotidienne moyenne sur les 30 derniers jours	
u_std_7j		×	×	×	Ecart-type de l'humidité quotidienne moyenne sur les 7 derniers jours	
tu_7j	×			×	Température humide, approximée à partir de <i>t_mean_7j</i> et <i>u_mean_7j</i>	

Sélection d'ensembles de régresseurs représentant les facteurs de risque

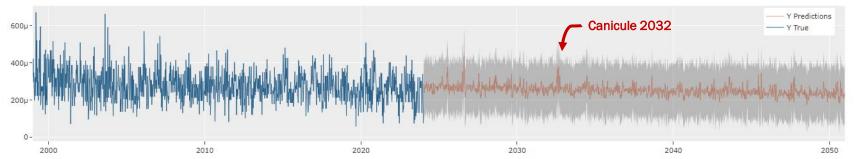
4 • Modélisation - Modèles : sélection

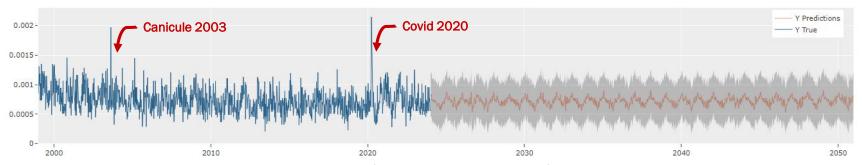
 Différents paramètres et hypothèses sont testés et évalués, afin de trouver un modèle minimisant la RMSE, tout en considérant que la rupture de tendance serait plutôt conjecturelle.

période observation	période obs. tendance (changepoint range)	traitement Covid	régresseurs	RMSE
1999 - 2019	1999 – 2019 <i>(0</i> ,99)	Non	v1	0,1799
1000 2010	1000 - 2010 (0,99)		v2	0,1799
1999 - 2023	1999 – 2019 (0,8)	Oui	v1	0,1786
			v2	0,1785
1999 - 2023	1999 – 2019 (0,8)	Non	v1	0,1788
1555 - 2025			v2	0,1788
1999 - 2023 1999 -	1999 – 2023 (0,99)	Non	v1	0,1786
	2000 2020 (0,00)		v2	0,1786

Sélection des paramètres optimaux des modèles individuels

Sommaire


- Données
- Etudes préalables
- Modélisation
- Projections
- Mesures de l'incertitude
- Conclusion



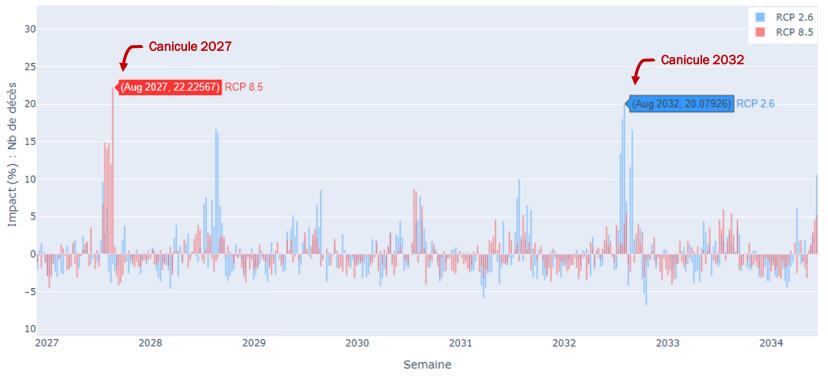
5 • Projections - Modèles Individuels

On retiendra deux points de référence : la canicule de 2032 de la simulation RCP2.6, et celle de 2027 du RCP8.5.

Projections des taux de mortalité, Hommes, 60-64 ans, Département 75, RCP2.6

Projections des taux de mortalité, Hommes, <u>75-79 ans</u>, Département 75, RCP2.6

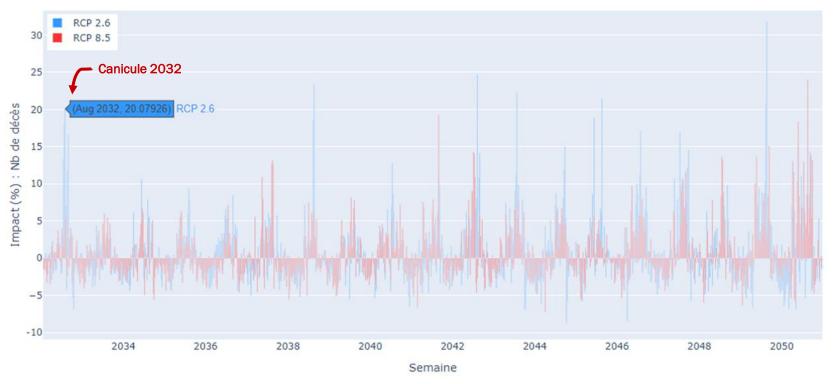
Effets attendus reproduits (saisonnalité, canicules, tendance)


5 • Projections - Impact climatique - Méthode

- A partir des modèles individuels et des estimations d'évolution de la population de l'INSEE, il est possible de passer de taux de mortalité à un nombre de décès.
 - → Taux de mortalité → Nombre de Décès
- Ainsi, les départements, sexes et tranches d'âges peuvent être regroupés pour avoir un nombre de décès à la maille semaine – France pour toute la population de la tranche 60-79 ans.
 - → Elargissement de la maille → semaine France
- L'impact des régresseurs est alors calculable par différence avec les résultats issus des mêmes modèles sans régresseurs.
 - → Mesure de l'impact climatique

- 5 Projections Impact climatique Hebdomadaire
- Les canicules de références sont bien répliquées, et provoquent environ 2 700 décès supplémentaires.

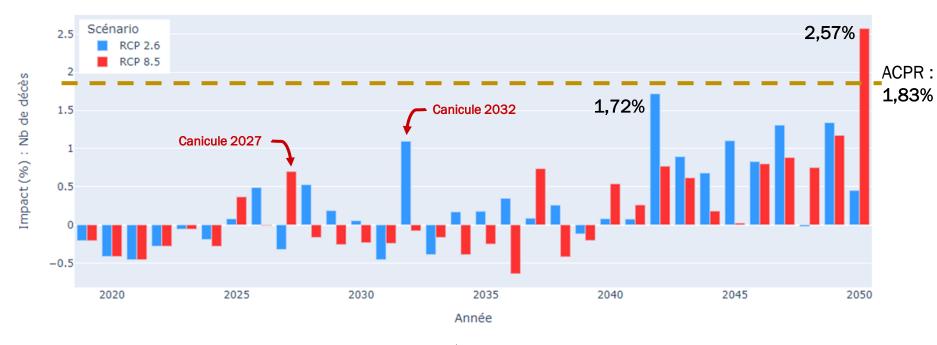
Impact hebdomadaire des régresseurs, 2027-2034, 60-79 ans



Impact des canicules quantifiable

- 5 Projections Impact climatique Hebdomadaire
- La surmortalité moyenne hebdomadaire de +6,0 décès pour le RCP8.5 et +10,1 pour le RCP2.6.

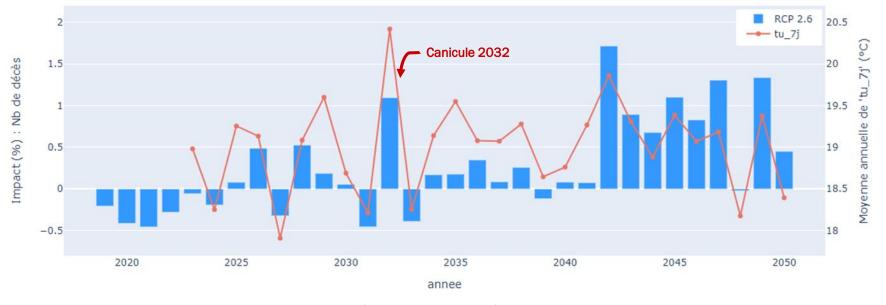
Impact hebdomadaire des régresseurs, 2034-2050, 60-79 ans


Surmortalité moyenne hebdomadaire calculable

5 • Projections - Impact climatique - Annuel

 L'agrégation à une maille annuelle permet de comparer les résultats aux chocs des superviseurs.

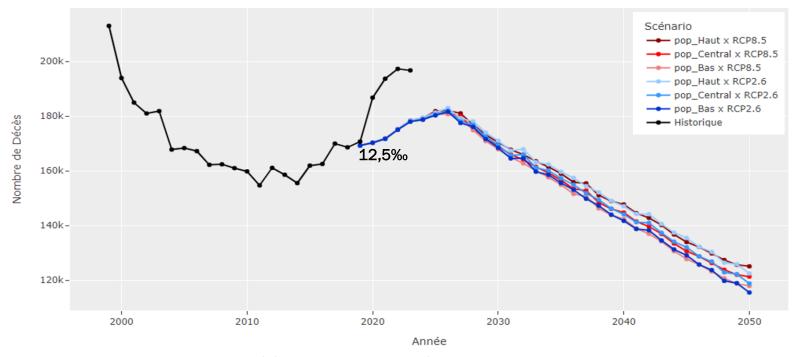
Impact annuel des régresseurs, 60-79 ans



Canicules répliquées, impact annuel mesuré et cohérent

- 5 Projections Impact climatique Température Humide
- La comparaison de l'impact climatique et de la température humide valide la pertinence de la variable.

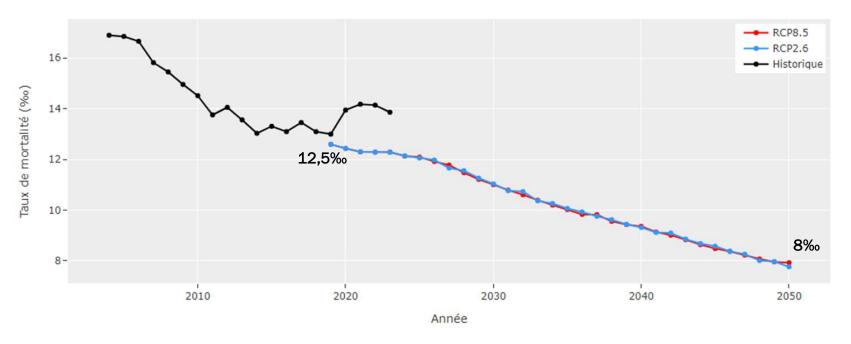
Impact annuel des régresseurs et température humide moyenne


Apport de la température humide confirmé

5 • Projections - Scénarios

 Les projections permettent d'observer la rupture de tendance conjecturelle et de mesurer l'incertitude liée aux scénarios.

Nombre de décès annuel selon les scénarios de projections, 60-79 ans


Ecarts de 2% à 8% causés par les scénarios

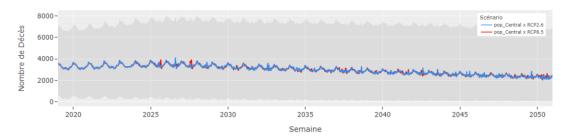
5 • Projections - Scénarios

 En rapportant le nombre de décès aux estimations de la population, on peut se ramener à des taux de mortalités.

Taux de mortalité annuels (%) selon les scénarios de projections

Poursuite de la baisse des taux de mortalité, de 12.5% à 8% en 2050

Sommaire

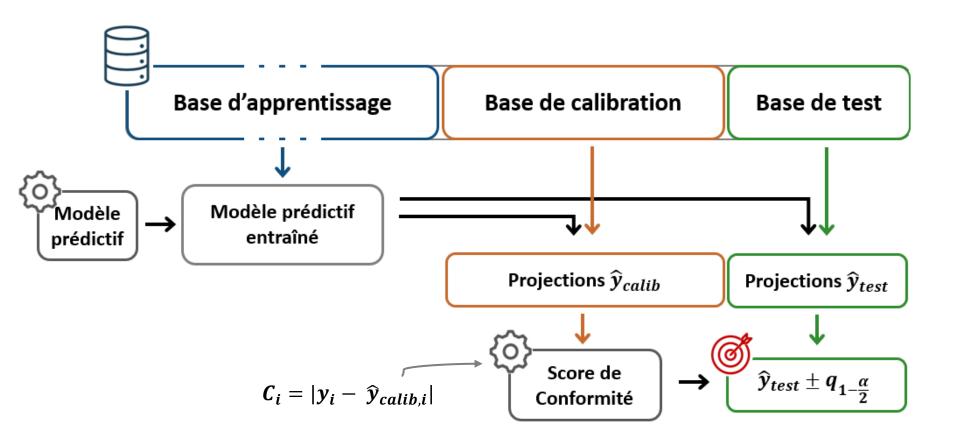

- Données
- Etudes préalables
- Modélisation
- Projections
- Mesures de l'incertitude
- Conclusion

6 • Incertitude - Prophet

- Incertitude liée aux données futures :
 - Scénarios de population INSEE
 - Scénarios climatique DRIAS
- Incertitude qualitative :

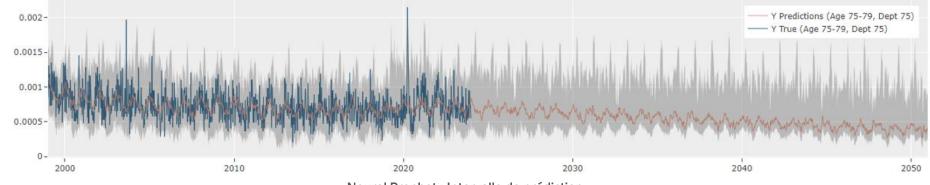
Intervalle de confiance hebdomadaire

- Incertitude liée aux modèles :
 - · Intervalle de confiance



Multiples sources d'incertitude, mesure qualitative avec intervalle de confiance

6 • Incertitude - Prédiction Conforme



Méthode agnostique de calcul d'intervalle de prédiction

- 6 Incertitude Neural Prophet
- Neural Prophet implémente des méthodes de prédictions conformes.
- Son application permet d'obtenir des intervalles de prédictions non-centrés et suivants la saisonnalité.

Neural Prophet : Intervalle de prédiction Hommes, 75-79 ans, Département 75, RCP2.6

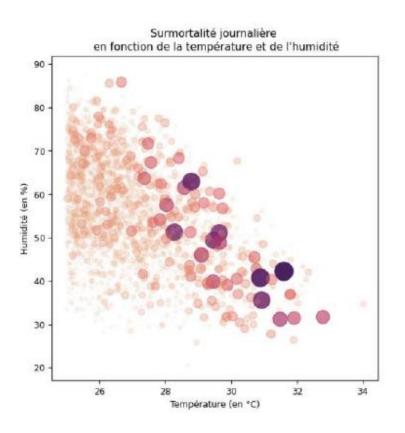
Méthode de mesure d'incertitude plus pertinente

Sommaire

- Données
- Etudes préalables
- Modélisation
- Projections
- Mesures de l'incertitude
- Conclusion

RÉDUCTION DU NOMBRE DE SIMULATIONS RISQUE-NEUTRE DANS UNE VALORISATION ALM

Conclusion

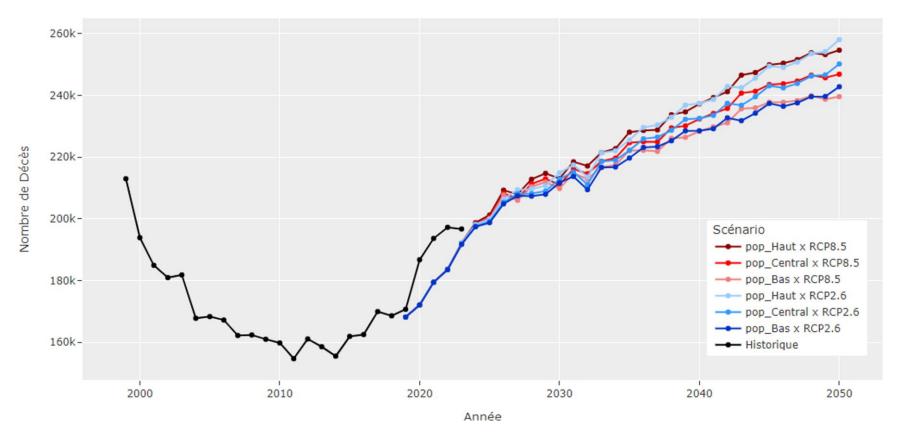

- Ce mémoire s'est inscrit dans une démarche d'amélioration de l'appréhension du risque climatique sur la mortalité.
- Une méthode numérique a été proposée, en se basant sur Prophet et son extension Neural Prophet intégrant de méthodes de conformal predictions.
- A partir de données open-source, les taux de mortalités des 60-79 ans ont été projetés à horizon 2050 suivant deux trajectoires de réchauffement.
- Les modèles permettent bien de répliquer les phénomènes souhaités (tendance, saisonnalité, canicules).

 Cette étude a permis de mettre en évidence la force des outils tels que Prophet ou la conformal prediction, qui pourraient s'appliquer à d'autres problématiques actuarielles ou être reproduits dans le cadre de scénarios ORSA.

TEMPÉRATURE HUMIDE

$$T_w = T \arctan(0.151977 \times (RH\% + 8.313659)^{0.5})$$

+ $\arctan(T + RH\%)$
- $\arctan(RH\% - 1.676331)$
+ $0.00391838 \times RH\%^{1.5} \times \arctan(0.023101 \times RH\%)$
- 4.686035


Approximation de la température humide par l'équation de Stull

Surmortalité journalière selon la température et l'humidité

Datalab, Galea & Associés

Neural Prophet : Projection du nombre de décès, vision Annuelle

