

Parametric Insurance Coverages against natural catastrophe risks: a new risk transfer solution in a world of climate extremes

Beatrice Parravicini Junior P&C Treaty Underwriter

18th March 2025

Supervising Professor: Gian Paolo Clemente Correlator: Francesco Della Corte

Table of Contents

Introduction to Catastrophe Risk

2 Insurability of Catastrophe risk

Alternative Risk Transfer Solutions

Case Study: Weather-based Crop Insurance

Results and Conclusions

Introduction to Catastrophe Risk What is a catastrophe risk?

A catastrophe risk is related to a **disaster**, which is « a serious disruption of the functioning of a community or a society at any scale due to **hazardous events** interacting with conditions of **exposure**, **vulnerability** and **capacity**, leading to one or more of the following: human, material, economic and environmental losses and impacts »

"La Gestione dei rischi climatici e catastrofali, Stefano Miami

Insurability of Catastrophe Risk Insurability Criteria – Berliner (1982) & Charpentier (2007)

4 | Parametric Insurance Coverage against natural catastrophe risks

Note The impact of artificial intelligence along the insurance value chain and

The Art & Science of Ri

on the insurability of risks, Martin Eling, Davide Nuessle, Julian Staubli, The Geneva Papers on Risk and Insurance

Alterantive Risk Transfer Solutions

5 | Parametric Insurance Coverage against natural catastrophe risks

*Note: from Mysiak and Pérex-Blanco (2016) classification

Parametric Disaster Insurance Definition and mechanism

From World Bank definition

Index or parametric insurance pays out benefits based on a pre-determined index for the loss of assets and investments as a result of weather or other catastrophe events

TYPE II

False Negative

Payout < Occurred Losses

CASE STUDY: Weather-based Crop Insurance Introduction to the Analysis

Weather-based Crop Insurance

The indemnity in based on realizations of a specific weather parameters measured over a specified period of time at a particular weather station

(1) Weather risks

(2) Type of crops

(3) Weather station

locations

(4) Agro-climatic zones

Technical Feasibility

(5) Collection of data

(6) Index

Design of product

AIM of the Case Study

Replicating the functioning of a Weather Index Insurance Product (WII) based on a rainfall index aiming to protect Indian farmers' crop production against severe natural events

(7) Trigger payout levels

Pricing contract premiums

CASE STUDY: Weather-based Crop Insurance Prefeasibility Assessment

(1) Weather risks Severe droughts or/and excess rainfall and the combination of the two events

(2) Type pf crops and Growth phases (by Large 1954) Growth

Winter Wheat Crop Sowing Period: 15th Nov. – 15th Dec.

Harvesting Period: 15th Mar. – 15th May

(3) Weather station location INDIAN STATES selected (4) Agro-climatic zones Uttar Pradesh in North-West India Madhya Pradesh in Central India Karnataka in South Peninsula Bihar in East & North-East

CASE STUDY: Weather-based Crop Insurance Technical Feasibility (1/4)

(5) Collection of data – CROP PRODUCTION

Indian Cavaranant'a Area	Period		Bihar	Karnataka	Madhya Pradesh	Uttar Pradesh
Production Statistics (APS)	Γ	Avg. Yield	2.00	0.82	1.73	2.73
		Sigma	0.26	0.20	0.16	0.18
Period	1997-2010 🧮	CV	0.13	0.24	0.09	0.07
1 2		Avg. Production (t)	4,2m	0,26m	7,2bn	25,5m
From 1997 to 2010 From 2011 to 2019 used for Average Yield used for calculating and Average Payout	2011 2019	Avg. Annual Price in € 2011-2019*	196	196	196	196
$\frac{Production}{Yield} = \frac{Production}{Area}$		Avg. Prod. Value in € 2011-2019	825,4m	50,9m	1,4bn	5bn

*It has been obtained as the average summary value of the single 2011-2019 annual averages previously obtained from the "Wheat Monthly Price – Euro per Metric Tons" – from www.indexmundi.com

CASE STUDY: Weather-based Crop Insurance Technical Feasibility (2/4)

(5) Collection of data – RAINFALL DATA in mm

		Defenses	•					
Sou Meteorological [Period	e	India	Bihar	Karnataka	Madhya Pradesh	Uttar Pradesh	
			Мах	1,401 in 1999	1,660 in 1987	1,095 in 1997	3,032 in 1961	2,473 in 1971
Perio	bd		Min	947 in 1972	629 in 2010	473 in 2010	874 in 2000	938 in 1997
1	2 Erom 2011 to 2010		LPA	1,164	1,167	737	2,051	1,750
used for Long Period used for calculating			Sigma	103	207	133	388	363
given region	ruyout		CV	0.089	0.178	0.181	0.189	0.208
		1997-2010	m-d	1 060	960	603	1 663	1 386
Porformanco	masuramant	1337-2010		1,000	300	003	1,000	1,000
It will be measured in term		m+d	1,268	1,375	870	2,439	2,113	
LPA, calculated of		Skewness	-0.04	-0.29	0.47	-0.18	0.07	

CASE STUDY: Weather-based Crop Insurance Technical Feasibility (3/4)

(6) Index – RAINFALL DATA

(7) Field Implementation

CASE STUDY: Weather-based Crop Insurance Technical Feasibility (4/4)

CASE STUDY: Weather-based Crop Insurance Bihar – Total Annual Rainfall Index (1/3)

Voar	Rainfall	Obs /	Catagorias	Dave	Payout %			Payout	amoun			
Tear	Annual	LPA	Categories	Excess		s-Deficit	Exc	cess	Det	ficit		
	Annual LPA 1	961-2010 =	1,168	Soft	Hard	Soft	Hard	Soft	Hard	Soft	Hard	
2011	1,097	-6%	N	0%	0%	-	-	-	-	-	-	
2012	1.032	-12%	N	0%	0%	-	-	-	-	-	-	
2013	1,070	-8%	N	0%	0%	-	-	-	-	-	-	
2014	1,061	-9%	N	0%	0%	-	-	-	-	-	-	
2015	873	-25%	D	25%	10%	193	77	-	-	193	77	
2016	1,158	-1%	N	0%	0%	-	-	-	-	-	-	
2017	1,112	-5%	N	0%	0%	-	-	-	-	-	-	
2018	861	-26%	D	25%	10%	187	75	-	-	187	75	25% * 4,202,208 * 178.04
2019	1,195	2%	N	0%	0%	-	-	-	-	-	-	Avg Prod 2018 Avg 1997-2010 Annual Price
	Т	OTAL.				380	152	-	-	380	152	
	Per 1 unit of	production	(in €)			0.46	0.18	-	-	0.46	0.18	
$\frac{861}{1,168} - 1 = -26\% \longrightarrow -20\% \text{ to } -59\%$							0.46 =	380 825	= 4,202,2	208 * 19	96.43i p	Avg Annual

13 Parametric Insurance Coverage against natural catastrophe risks

Results Bihar JF – Total Seasonal Rainfall Index (2/3)

Voar	Rainfall	Obs /	Catagorias	Pavo				Payout	amount	t		
Tear	Annual	LPA	Categories	Гаус	Fayout 70		-Deficit	Exc	ess	De	ficit	
	Seasonal JF LP/	A 1961-2010	= 21.212	Soft	Hard	Soft	Hard	Soft	Hard	Soft	Hard	
2011	12	-43%	D	25%	10%	238	95	-	-	239	95	
2012	21	-1%	N	0%	0%	-	-	-	-	-	-	
2013	28	32%	E	25%	10%	247	98	247	98	-	-	
2014	51	140%	LE	75%	75%	674	674	674	674	-	-	
2015	15	-29%	D	25%	10%	193	77	-	-	193	77	
2016	10	-53%	D	25%	10%	158	63	-	-	158	63	
2017	1	-95%	LD	75%	75%	486	486	-	-	486	486	
2018	0	-100%	No Rain	100%	100%	748	748	-	-	748	748	100% *4,202,
2019	31	46%	E	25%	10%	189	75	189	75	-	-	Avg P 1997-2
TOTAL						2,935	2,319	1,110	849	1,824	1,470	
	Per 1 unit of	production	(in €)			3.56	2.81	1.35	1.03	2.21	1.78	

$$\frac{0}{21.212} - 1 = -100\%$$

14 | Parametric Insurance Coverage against natural catastrophe risks

3.56 = 2,935 = 4,202,208 * 196.43Price 2011-2019

Results Bihar JF – Weighted Annual Seasonal Rainfall Index (3/3)

Voar	Rainfall	Obs /	Categories	(a) x	New	Payout %				Payout	amount	_	
Tear	Annual	LPA	(a)	45%	(a)	Tay	r ayout 70		-Deficit	Excess		Deficit	
:	Seasonal .	IF LPA 196	I-2010 = 21.21	2		Soft	Hard	Soft	Hard	Soft	Hard	Soft	Hard
2011	12	-43%	D	-20%	D	25%	10%	238	95	-	-	238	95
2012	21	-1%	N	0%	Ν	0%	0%	-	-	-	-	-	-
2013	28	32%	Е	14%	Ν	0%	0%	-	-	-	-	-	-
2014	51	140%	LE	63%	LE	75%	75%	674	674	674	674	-	-
2015	15	-29%	D	-13%	Ν	0%	0%	-	-	-	-	-	-
2016	10	-53%	D	-24%	D	25%	10%	158	63	-	-	158	63
2017	1	-95%	LD	-43%	D	25%	10%	162	64	-	-	162	64
2018	0	-100%	No Rain	-45%	D	25%	10%	187	74	-	-	187	74
2019	31	46%	Е	21%	Е	25%	10%	189	75	189	75	-	-
	TOTAI.			1				1,609	1,048	863	750	745	298
Pe	Per 1 unit of production (in €)						1.95	1.27	1.05	0.91	0.90	0.36	

Weight JF 45%

Res	ults			Total Annual Rainfall Index		Total S Rainfa	Total Seasonal Rainfall Index JF		Weighted Annual Seasonal Rainfall Index JF = 45%		Total Seasonal Rainfall Index JJAS		Annual Rainfall S = 5%
Year	India	Bihar (B)	Madhya Pradesh (MP)	В	MP	В	MP	В	MP	В	MP	В	MP
2011	N	N	LE	N	N	D	LD	D	D	Ν	Е		
2012	N	N	Е	N	N	N	N	N	Ν	Ν	N		
2013	N	N	LE	N	Е	Е	LE	N	Е	D	Е		
2014	N	Ν	Е	N	D	LE	LE	LE	LE	Ν	N		
2015	N	D	Е	D	N	D	LE	N	Е	D	N	NO PAYOUT	NO PAYOUT
2016	N	N	LE	N	N	D	D	D	Ν	Ν	Е		
2017	N	Ν	Е	N	N	LD	D	D	D	Ν	N		
2018	Ν	D	E	D	D	No Rain	D	D	D	D	N		
2019	N	N	LE	N	E	E	D	E	Ν	Ν	E		
		γ		380	1,449	2,935	5,826	1,609	2,910	627	1,423	TO	TAL
	Obs/LPA annual v	using India alues for ea	a LPA on ch states	0.46	1.03	3.56	4.13	1.95	2.06	0.76	1.01	Per 1 produc	unit of tion (€)

16 | Parametric Insurance Coverage against natural catastrophe risks

Conclusions

Emergency of natural disasters and innovation of parametric insurance coverages

Innovative alternative to traditional insurance, especially in times of hard insurance market

Role of parametric coverages

- Coverage of uninsurable risks worldwide
- Fast and transparent payouts based on external observable variables
- "basis risk" must be minimized through careful trigger decision

Current applications and future research

- To overcome limitations in data access, especially in developing countries
- Diverse applications, from micro-insurance to public authorities

Questions?

P. The Art & Science of Risk

APPENDIX

Parametric Disaster Insurance Indemnity Insurance vs Parametric Insurance

	Indemnity Insurance	Parametric Insurance							
Core legal requirements	Insurable interest proof of loss	Insurable interest							
Nature of risk	Risk should be largely independent	Risk should be largely correlated							
Payment determination	After the event loss assessment	Before the event pre-defined payments schedule							
Actuarial determination	With independent risk, the risk of an insurance pool is less than the risk of the individual	Historic time series of events is combined with the exposure to develop an expected loss for the parametric structure							
Trasparency	Can be challenged with complex exclusions	Can be fully trasparent							
Moral hazard & adverse selection	The insured can influence the risk and will have more knowledge of the risk	The insured has no influence on payments but there can be adverse selection if sales closing is not properly set							
Speed of payment	take time to complete loss assessment	made with a short-time period							
Core limitation	Higher cost for loss assessment and mechanisms to control adverse selection and moral hazard	Poorly designed products can fail to meet the needs when there is a loss or may even pay when there is no problem for the client (basis risk)							
Flexibility	Sometimes constrained by requirements for proof of loss**	Can cover a variety of financial risk that are difficult to prove use for business interruptions and good potential for the intangible economy							
	**The granularity level required depends on the jurisdiction selected								

Parametric Insurance Coverage against natural catastrophe risks

21

